Contribution from the Department of Chemistry, University of California, and the Inorganic Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

Calculation of Atomic Charges by an Electronegativity Equalization Procedure

WILLIAM L. JOLLY* and WINFIELD B. PERRY

Received December 27, 1973

A procedure for calculating atomic charges based on the equalization of atomic orbital electronegativities has been extended to cover compounds containing any of the elements in the periodic table up to radon. Atomic charges calculated by this method correlate well with core electron binding energies using the potential equation. The correlations are generally improved by inclusion of a relaxation energy term, calculated on the basis of the principle of equivalent cores.

Introduction

In a previous study, an electronegativity equalization procedure for calculating atomic charges of compounds of the first row of the periodic table was calibrated using experimental 1s electron binding energies for carbon, nitrogen, oxygen, and fluorine.¹ We now show that (1) this method can be extended to compounds of elements from the remainder of the periodic table, (2) significant improvement in the core binding energy correlations is achieved by including a relaxation energy term in the potential equation, and (3) compounds for which nonequivalent resonance structures can be written must be specially treated.

The Calculational Procedure

In this section we give detailed stepwise instructions for the calculation of atomic charges in molecules for which unambiguous valence bond structures can be written.

Step 1. A valence bond structure, or hybrid of several such structures, is drawn for the compound. If possible, each nontransition element atom heavier than helium should have just an octet of valence electrons; only s and p valence orbitals are used for these atoms. Bond orders are assigned to the bonds, and formal charges² are assigned to the atoms. Several examples of valence-bond structures for nontransition element compounds follow. (In these and other examples, bond orders of unity and formal charges of zero are not explicitly indicated.)

There has been considerable discussion of the importance of valence-shell d orbitals in the bonding of nontransition elements beyond the first row of the periodic table. Although most experimental data for compounds of such elements are equivocal with respect to the importance of d orbitals, the data generally can be at least qualitatively rationalized without recourse to d orbital bonding.^{3,4} Extended Huckel calculations have indicated that d orbitals make only minor contributions to the bonding in PX₅ compounds.^{5,6} Recent *ab initio* calculations⁷ have shown that phosphorus d orbitals play a significant but relatively unimportant role in the bonding of PF₅. We have concluded that our simple calculations will not be in serious error by the neglect of d orbitals in nontransition elements. Some justification for this conclusion is found in the fact that we obtain good correlations of core binding energies using charges calculated on this basis. However, with respect to our calculations, the question of d orbitals is purely academic, because there are no reliable electronegativity values available for d orbitals.

In the case of "hypervalent" molecules in which the central atom is bonded to two sterically distinct types of ligands (as in PF_5 , SF_4 , CIF_3 , and BrF_5), the bonding electrons must be appropriately apportioned between the two types of bonds. Consider the bonding in PF₅. Because of the trigonal bipyramidal symmetry of this molecule, no more than one phosphorus σp orbital can be involved in bonding the axial ligands, and no more than two phosphorus σp orbitals can be involved in bonding the equatorial ligands. The only restrictions on the phosphorus s orbital are that it must be equally involved in the two axial bonds and equally involved in the three equatorial bonds. If there were complete participation of the s and p orbitals in bonding, with equal participation of the s orbital in all five bonds, the bond orders would be 0.7 and 0.867 for the axial and equatorial bonds, respectively. We have found that a better correlation of the fluorine binding energies is obtained by using bond orders of 0.72 and 0.853, corresponding to a slight favoring of the axial orbitals by the s orbital. Such relative enhancement of s character in the digonal orbitals is consistent with the fact that the overlap integral of a pair of sp hybrid orbitals is greater than that of a pair of sp² hybrid orbitals.⁸

We assume that nonbonding valence orbitals, such as those on the central atoms of SF_4 and ClF_3 , are completely occupied by pairs of electrons. Thus, in the hypothetical conversion of PF_5 into SF_4 and ClF_3 by the replacement of equatorial fluorines by lone pairs, we must withdraw some electron density from the remaining bonds. Because an equatorial

(3) T. B. Brill, J. Chem. Educ., 50, 392 (1973).

- (6) R. S. Berry, M. Tamres, C. J. Ballhausen, and H. Johansen, Acta Chem. Scand., 22, 231 (1968).
- Acta Chem. Scand., 22, 231 (1968). (7) A. Strich and A. Veillard, J. Amer. Chem. Soc., 95, 5574 (1973); J. M. Howell, J. R. Van Wazer, and A. R. Rossi, Inorg. Chem., 13, 1747 (1974).
- (8) C. A. Coulson, "Valence," Oxford, University Press, London, 1952, p 199.

AIC30926E

^{*} To whom correspondence should be addressed at University of California.

⁽¹⁾ W. L. Jolly and W. B. Perry, J. Amer. Chem. Soc., 95, 5442 (1973).

⁽²⁾ The formal charge is the charge which the atom would have if the bonding electrons in each bond were equally apportioned between the pair of bonded atoms.

⁽⁴⁾ J. I. Musher, Angew. Chem., Int. Ed. Engl., 8, 54 (1969).
(5) R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Amer. Chem. Soc., 94, 3047 (1972).

lone pair is repelled more strongly by axial bonding electrons than by equatorial bonding electrons,⁹ it is reasonable to assume that more electron density is withdrawn from the axial bonds than from the equatorial bonds. Our recipe is to withdraw twice as much electron density from axial bonds. In this way we obtain axial and equatorial bond orders of 0.671 and 0.829, respectively, for SF₄, and 0.603 and 0.795, respectively, for ClF_3 .

In the case of a molecule such as BrF_5 , we assume that there is negligible repulsion between the lone pair and the axial bonding electrons on the opposite side of the molecule and that in the hypothetical conversion of SF_6 into BrF_5 , all of the required electron density is withdrawn from the basal bonds. Thus we obtain apical and basal bond orders of 0.667 and 0.583, respectively, in BrF_5 .

The structures for PF₅, SF₄, ClF₃, and BrF₅ are indicated below.

By analogous reasoning, we obtain bond orders of 0.5 in XeF_2 , XeF_4 , and XeF_6 .

In the bonding of a transition metal atom or ion, it is assumed that the number of orbitals available to accept electrons from ligands is equal to the number of vacant s, p, and d valence orbitals. In general, the available s and p orbitals are completely involved in bonding. Vacant d orbitals of σ symmetry are used to the extent necessary to provide each ligand, as far as possible, with a full σ bond. For example, in WF_6 it is assumed that two 5d orbitals are used, and we write the structure

The question of ligand-to-metal $p\pi \rightarrow d\pi$ bonding is somewhat problematical. There seems to be little doubt that such π bonding is important in a complex such as CrO_4^{2-} in which the ligand atoms would otherwise have full -1 formal charges.¹⁰ However there is some question as to the importance of π bonding in a complex such as WF₆ in which the ligand atoms would otherwise have no formal charge.¹¹ We have chosen to ignore π bonding in the latter case because of

(9) R. J. Gillespie, J. Chem. Educ., 40, 295 (1963).
(10) C. J. Ballhausen, "Introduction to Ligand Field Theory," McGraw-Hill, New York, N. Y., 1962, p 243.

what seems to be a general tendency for the stability of structures in which formal charges are minimized and because of the structure of CrO_2F_2 .¹² In the latter molecule, $\angle O$ -Cr-O = 102.1° and $\angle F$ -Cr-F = 118.9°. We interpret the difference in the angles as evidence for relatively great $p\pi \rightarrow p\pi$ $d\pi$ bonding in the Cr-O bonds compared to the Cr-F bonds. (The bond angle corresponding to maximum $p\pi \rightarrow d\pi$ overlap is 90°.) We propose the following rule: Vacant d orbitals of π symmetry are used in ligand-to-metal $p\pi \rightarrow d\pi$ bonding only if a reduction in formal charges results. Thus in CrO₂-Cl₂ it is assumed that two 3d orbitals are used in forming double bonds to the oxygen atoms, and we write

When metal-to-ligand $d\pi \rightarrow p\pi$ back-bonding can occur in a transition metal complex, we assume that it occurs, as far as possible, consistent with the number of metal $d\pi$ electrons and empty ligand $p\pi$ orbitals available. Formal charges are modified in accordance with the back-bonding, but bond orders are assumed to be the same as those in the structures without back-bonding. Thus for $Cr(CO)_6$ we write

The main justification of this method for accounting for metal-to-ligand $d\pi \rightarrow p\pi$ back-bonding is that it gives reasonably good results in correlating the carbon and oxygen binding energies of metal carbonyl complexes. When further binding energy data become available for other types of complexes, it may be necessary to modify the method. The fact that our present method ignores the changes in bond order that accompany back-bonding is at least consistent with the fact that the average C-O bond distance in metal carbonyls is only about 0.01 Å longer than it is in free CO.¹³

Step 2. It is necessary to assign an orbital hybridization (*i.e.*, the fractional s character) for each σ bond of each nontransition element in the compound. This assignment is necessary because the s and p electronegativities of such elements are different. However, for the transition elements, we have made no distinction between the valence s, p, and d electronegativities (an average electronegativity is used), and therefore it is unnecessary to assign hybridizations for such elements. We define S_{nm} as the fractional s character of the σ orbital used by atom n in the bond to atom m. For any atom for which the total ligancy (i.e., the number of com-

⁽¹¹⁾ N. Bartlett, Angew Chem. Intl. Ed., 7, 433 (1968).

⁽¹²⁾ C. D. Garner, R. Mather and M. F. A. Dove, J. Chem. Soc. Chem. Commun., 633 (1973).

⁽¹³⁾ L. E. Sutton, Ed., Chem. Soc., Spec. Publ., No. 11 (1958).

plete lone pairs¹⁴ plus the number of other atoms bonded to that atom) is 4 or less, we assume that S_{nm} is the same for each bond and equal to the reciprocal of the total ligancy. Thus $S_{nm} = 0.25$ for the central atoms in GeH₄, NSF₃, OSF_2 , and H_2S , and S = 0.33 and 0.5, respectively, for the middle atoms in SO_2 and CO_2 . When the total ligancy is 5 (trigonal-bipyramidal type molecules), one p orbital must be assigned to the two axial bonds, and two p orbitals must be assigned to the three equatorial orbitals. For the axial bonds, $S_{\rm nm} = (N_{\rm ax} - 0.5)/N_{\rm ax}$, where $N_{\rm ax}$ is the axial bond order; for the equatorial bonds, $S_{nm} = (N_{eq} - 0.667)/N_{eq}$, where N_{eq} is the equatorial bond order. When the total ligancy is 6 (octahedral type molecules), one p orbital must be assigned to the pair of orbitals along each axis. Thus for any bond, $S_{nm} = (N - 0.5)/N$, where N is the bond order.

Step 3. For each bond (or each set of equivalent bonds) in the compound, an equation of the following type is set up

$$\frac{7.3(h_{\rm m} + h_{\rm n})}{(N_{\rm nm})^{0.7}}q_{\rm mn} + h_{\rm m}\sum_{i\neq n}q_{\rm mi} - h_{\rm n}\sum_{i\neq m}q_{\rm ni} = x(p)_{\rm n} - x(p)_{\rm m} + \frac{S_{\rm nm}}{(1 + \Pi_{\rm nm})^{0.7}} [x(s)_{\rm n} - x(p)_{\rm n}] - \frac{S_{\rm mn}}{(1 + \Pi_{\rm nm})^{0.7}} [x(s)_{\rm m} - x(p)_{\rm m}] + c_{\rm n}h_{\rm n}F_{\rm n} - c_{\rm m}h_{\rm m}F_{\rm m}$$

In this equation, the subscripts n and m refer to the two atoms of the bond.

The parameters x(s), x(p), and h are listed in Table I for most of the elements in the periodic table. These parameters were obtained as far as possible from the orbital electronegativity tabulations of Hinze and Jaffe.¹⁵ Corresponding electronegativity data for transition metals are either lacking or difficult to use because of uncertainties regarding orbital hybridizations in transition metal compounds. For these compounds we have chosen to ignore hybridization of the transition metal orbitals and to use an average electronegativity value for all the bonding orbitals of a given transition metal. The transition metal electronegativities listed in Table I were calculated by the Allred-Rochow formula;¹⁶ like the Hinze-Jaffe electronegativities, they are similar in magnitude to the Pauling values.¹⁷ The parameters for the nontransition elements heavier than iodine are estimates; those for the rare gases are partly based on data of Fung.¹⁸

The parameter c has the value 2.7 for the elements from hydrogen to argon in the periodic table and the value 1.6 for elements heavier than argon. An increase in the formal charge of an atom by one unit causes the electronegativities of the atomic orbitals to increase by an amount proportional to the factor c. The increase in formal charge is always caused by the bonding of a Lewis acid to the atom, with conversion of a lone pair into a bonding pair. Thus the increase in electronegativity is caused, at least partly, by an increased positive field due to the polarization of a lone pair by a Lewis acid. One would expect the electronegativity increase to be smaller the farther the atomic orbitals are from the

(14) A fractional number of lone pairs is associated with any atom for which the sum of the bond orders is nonintegral. For example, each fluorine atom in XeF₂ (with Xe-F bond orders of 0.5) has 3.5 lone pairs.

lone pair, *i.e.*, the larger the atom. Hence it is understandable that we found it necessary to use a smaller value of cfor elements of higher atomic number.

The terms N_{nm} and Π_{nm} stand for the bond order and the π -bond order, respectively, and F stands for the atomic formal charge. It should be noted that, when $N_{nm} > 1$, $N_{nm} =$ $1 + \Pi_{nm}$. The quantity q_{nm} is the negative charge transferred from atom n to atom m. (Thus $q_{nm} = -q_{mn}$.) The term $\Sigma_{i \neq m} q_{ni}$ is the sum of the negative charges transferred from atom n to all the atoms bonded to atom n except atom m, and $\sum_{i \neq n} q_{mi}$ is the analogous term for atom m.

Upon completion of step 3 for a molecule containing j different types of bonds, one obtains j linear equations with junknown q values.

Step 4. The equations are solved for the q values, and the charge Q on each atom is calculated using the general relation

$$Q_n = F_n + \Sigma q_{ni}$$

We shall illustrate the method of calculation with two examples, PF_5 and WF_6 , for which we have already given the valence bond structures. In PF₅, both the axial and equatorial fluorine atoms have total ligancies of 4, corresponding to a value of 0.25 for S_{FeP} and S_{FeP} . For the phosphorus orbital used in bonding to the axial fluorines, $S_{PFa} = (0.72 - 0.5)/$ 0.72 = 0.3056; for the orbital used in bonding to the equatorial fluorines, $S_{PFe} = (0.853 - 0.667)/0.853 = 0.2181$. Thus for PF_5 we obtain the following equations

$$\frac{7.3(1.70 + 1.075)}{0.72^{0.7}}q_{\mathbf{F_aP}} + 1.70(0) - 1.075(q_{\mathbf{PF_a}} + 3q_{\mathbf{PF_e}}) = 2.23 - 3.90 + \frac{0.3056}{1^{0.7}}(4.62 - 2.23) - \frac{0.25}{1^{0.7}}(10.31 - 3.90) + 2.7(1.075)(1) - 2.7(1.70)(-0.28)$$

$$\frac{7.3(1.70 + 1.075)}{0.853^{0.7}}q_{\mathbf{F_eP}} + 1.70(0) - 1.075(2q_{\mathbf{PF_a}} + 2q_{\mathbf{PF_e}}) = 2.23 - 3.90 + \frac{0.2181}{1^{0.7}}(4.62 - 2.23) - \frac{0.2181}{1^{0.7}}(4.62 - 2.$$

$$\frac{0.25}{1^{0.7}}(10.31 - 3.90) + 2.7(1.075)(1) - 2.7(1.70)(-0.147)$$

These reduce to the following pair of equations

$$26.5699q_{F_aP} + 3.225q_{F_eP} = 1.6456$$

$$2.150q_{F_{a}P} + 24.7924q_{F_{a}P} = 0.8260$$

From these we readily calculate $q_{FeP} = 0.0282$ and $q_{FaP} =$ 0.0585, and then $Q_{\rm P} = +0.798$, $Q_{\rm Fa} = -0.222$, and $Q_{\rm Fe} =$ -0.119.

In WF₆, the fluorine atoms have total ligancies of 4, corresponding to $S_{FW} = 0.25$. An average electronegativity value is used for tungsten, and therefore it is unnecessary to evaluate S_{WF} . (In effect, we assume x(s) = x(p).) Thus we obtain the equation

$$\frac{7.3(1.70+0.50)}{1^{0.7}}q_{\rm FW} + 1.70(0) - 0.50(5)q_{\rm WF} =$$

$$1.40 - 3.90 - \frac{0.25}{1^{0.7}}(10.31 - 3.90) + 1.6(0.50)(0) -$$

$$(2.7)(1.70)(0)$$

⁽¹⁵⁾ J. Hinze and H. H. Jaffe, J. Amer. Chem. Soc., 84, 540 (1962); J. Phys. Chem., 67, 1501 (1963).

⁽¹⁶⁾ A. L. Allred and E. Rochow, J. Inorg. Nucl. Chem., 5, 264

^{(1958);} E. J. Little and M. M. Jones, *J. Chem. Educ.*, 37, 231 (1960). (17) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960.

⁽¹⁸⁾ B.-M. Fung., J. Phys. Chem., 69, 596 (1965).

Table I.	Atomic Parameters	Used in	Electronegativity	Equalization	Calculations ^a
----------	-------------------	---------	-------------------	--------------	---------------------------

Atom	<i>x</i> (s)	<i>x</i> (p)	h	Atom	x (s)	<i>x</i> (p)	h	
Н	2.21		1.285	Nb	1.23		(0.50)	
He	(2.75)		(1.50)	Мо	1.30		(0.50)	
Li	0.84	0.47	0.46	Tc	1.36		(0.50)	
Be	2.15	0.82	0.63	Ru	1.42		(0.50)	
В	3.25	1.26	0.84	Rh	1.45		(0.50)	
C	4.84	1.75	1.12	Pd	1.35		(0.50)	
Ν	6.70	2.65	1.21	Ag	1.42		(0.50)	
0	8.98	3.49	1.53	Cd	1.46		(0.50)	
• F	10.31	3.90	1.70	In	2.88	0.92	0.602	
Ne	(11.44)	(4.40)	(1.90)	Sn	3.80	2.08	0.435	
Na	0.74	0.32	0.467	Sb	4.22	2.36	0.871	
Mg	1.77	0.56	0.53	Te	4.81	2.77	1.187	
Al	2.69	1.11	0.585	Ī	5.06	2.52	0.915	
Si	3.88	1.82	0.737	Xe	(7.60)	(3.80)	(1.20)	
Р	4.62	2.23	1.075	Cs	(0.40)	(0.40)	(0.40)	
S	5.12	2.63	0.982	Ba	(1.15)	(0.25)	(0.40)	
C 1	6.26	2.95	1.11	La	1.08		(0.50)	
Ar	(9.00)	(4.20)	(1.50)	Ce	1.06		(0.50)	
K	0.77	0.38	0.288	Pr-Sm	1.07		(0.50)	
Ca	1.36	0.42	0.452	Eu	1.01		(0.50)	
Sc	1.2	0	(0.50)	Gđ	1.11		(0.50)	
Ti	1.3	2	(0.50)	ТЬ-Но	1.10		(0.50)	
v	1.4	5	(0.50)	Er, Tm	1.11		(0.50)	
Cr	1.5	6	(0.50)	Yb	1.06		(0.50)	
Mn	1.6	0	(0.50)	Lu	1.14		(0.50)	
Fe	1.6	4	(0.50)	Hf	1.23		(0.50)	
Co	1.7	0	(0.50)	Та	1.33		(0.50)	
Ni	1.7	5	(0.50)	W	1.40		(0.50)	
Cu	1.7	5	(0.50)	Re	1.46		(0.50)	
Zn	1.6	6	(0.50)	Os	1.52		(0.50)	
Ga	3.18	1.22	0.632	Ir	1.55		(0.50)	
Ge	4.06	2.09	0.680	Pt	1.44	•	(0.50)	
As	3.84	2.40	0.868	Au	1.42	2	(0.50)	
Se	4.97	2.56	1.240	Hg	1.44	ļ	(0.50)	
Br	5.94	2.62	0.940	Tl	(2.44)	(0.94)	(0.60)	
Kr	(8.00)	(4.00)	(1.40)	Pb	(2.35)	(1.28)	(0.50)	
Rb	0.50	0.54	0.418	Bi	(2.58)	(1.44)	(0.80)	
Sr	1.26	0.34	0.424	Po	(3.06)	(1.76)	(1.00)	
Y	1.1	1	(0.50)	At	(3.90)	(1.96)	(0.90)	
Zr	1.2	2	(0.50)	Rn	(6.00)	(3.00)	(1.00)	

^a Values were taken from J. Hinze and H. H. Jaffe, J. Amer. Chem. Soc., 84, 540 (1962); J. Phys. Chem., 67, 1501 (1963); A. L. Allred and E. Rochow, J. Inorg. Nucl. Chem., 5, 264 (1958); E. J. Little and M. M. Jones, J. Chem. Educ., 37, 231 (1960). Parenthesized values are estimates.

From this equation we readily calculate $q_{WF} = 0.2210$, $Q_W =$ +1.326, and $Q_{\rm F} = -0.2210$.

We have written a Fortran IV computer program, CHELEQ, for making these atomic charge calculations; a printout of the program will be sent upon request.

Correlation of Core Binding Energies

Atomic charges calculated by the procedure which we have outlined can be used to correlate core binding energies by the point charge potential model equation¹⁹

$$E_{\mathbf{B}} = kQ + V + l + E_{\mathbf{R}} \tag{1}$$

In this equation, $E_{\mathbf{B}}$ is the binding energy for a particular core level in a particular atom (the "ionized" atom), Q is the charge of the ionized atom, V is the Coulomb potential energy at the site of the ionized atom due to the other charged atoms of the molecule, k and l are empirical constants (determined by least-squares fitting of the binding energies for a given element), and $E_{\mathbf{R}}$ is the relaxation energy associated with the shift of electron density toward the core hole. Explicit inclusion of the relaxation energy term can, in theory, be obviated by using modified values of Q and Vcorresponding to a hypothetical "transition state" molecule

(19) (a) K. Siegbahn et al., "ESCA Applied to Free Molecules," North-Holland Publishing Co., Amsterdam, 1969; (b) U. Gelius, Physica Scr., 9, 133 (1974).

which has a valence electron distribution halfway between that of the initial molecule and that of the core-ionized molecule.1,20,21

$$E_{\mathbf{B}} = kQ + k\Delta Q^* + V + \Delta V^* + l \tag{2}$$

Here ΔQ^* and ΔV^* are the changes in Q and V on going from the initial to the transition state. Hence

$$E_{\mathbf{R}} = k\Delta Q^* + \Delta V^* = k(Q_{\mathbf{f}} - Q - 1)/2 + (V_{\mathbf{f}} - V)/2$$
(3)

where Q_f and V_f are the values of Q and V for the core-ionized molecule. These values can be estimated using the principle of equivalent cores,²² in which it is assumed that a coreionized atom is chemically equivalent to an atom of the next element in the periodic table.

Using eq 1 and 3, we have correlated 220 core binding energies for 144 different gaseous compounds. These binding energies include 64 carbon 1s, 20 nitrogen 1s, 24 oxygen 1s, 28 fluorine 1s, 11 silicon 2p, 13 phosphorus $2p_{3/2}$, 16 sulfur $2p_{3/2}$, 16 chlorine $2p_{3/2}$, 3 chromium $2p_{3/2}$, 8 ger-

⁽²⁰⁾ W. L. Jolly, Discuss. Faraday Soc., 54, 13 (1972).
(21) D. W. Davis and D. A. Shirley, Chem. Phys. Lett., 15, 185

<sup>(1972).
(22)</sup> W. L. Jolly and D. N. Hendrickson, J. Amer. Chem. Soc.,
92, 1863 (1970); W. L. Jolly in "Electron Spectroscopy," D. A.
Shirley, Ed., North-Holland Publishing Co., Amsterdam, and American Elsevier, New York, N. Y., 1972, p 629.

Table II.	Charges, Relaxation	1 Energies, and	Experimental and	Calculated Cor	e Binding Energies
					<u> </u>

$ \begin{array}{c cc} \hline ccc} \hline cccc} \hline ccccc} \hline ccccc} \hline ccccc} \hline cccccccc$		E _B , eV ^a				· ···· ···· · ····		EE	, eVa	
	Compound	Q	$-E_{\mathbf{R}}, \mathbf{eV}$	Exptl	Calcd v	Compound	Q	$-E_{\mathbf{R}}, \mathbf{eV}$	Exptl	Calcd v
$ \begin{array}{c} \operatorname{crc}(\mathbf{r}_{1})_{1}, & -0.041 & 8.33 & -1.129 & -1.03 & \operatorname{CO}^{-1}, & 0.054 & 4.27 & 5.50^{-1}, & 4.31 \\ \operatorname{scr}(\mathbf{r}_{1})_{1}, & -0.041 & 8.33 & -1.139 & -1.03 & \operatorname{CO}^{-1}, & 0.216$		Ca	urhon			CHECE	0.235	7 40	5 28 h	5 78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge(CH ₂)	-0.041	8.33	-1.12^{b}	-1.03	CO	0.054	4.27	5.30 <i>e</i> , <i>i</i>	4.81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Si(CH_3)_4$	-0.054	8.20	-1.10 b	-1.08	CCl ₄	0.256	9.71	5.50 ¹	4.13
$ \begin{array}{c} \label{eq:holescale} \begin{array}{c} \mbox{holescale} $		0.020	7.02	0.00 c	0.55	CH ₂ F ₂	0.214	7.10	5.557	5.46
$ \begin{array}{c} {\rm chr} (c\bar{h}, & -0.043 & 4.33 & -0.52^b & -1.17 & C, F_{\rm c} & 0.275 & 8.36 & 6.30^h & 7.39 \\ {\rm cr} (c\bar{h}, & -0.027 & 7.99 & -0.50^c & -0.82 & CG & 0.294 & 6.07 & 6.30^c & 7.38 \\ {\rm chr} (c\bar{h}, & -0.037 & 5.17 & -0.40^b & -1.08 & C\bar{h}^* & 0.385 & 7.12 & 8.31^b & 9.44 \\ {\rm SH}_{\rm cl} (c\bar{h}, & -0.037 & 5.17 & -0.40^b & -1.18 & C\bar{h}^* & 0.498 & 7.12 & 8.1^b & 9.44 \\ {\rm chr} (c\bar{h}, & -0.047 & 7.55 & -0.20^c & -0.37 & C(\bar{h}, NH & -0.156 & 7.44 & -5.20^c & -6.57 \\ {\rm chr} (c\bar{h}, & -0.047 & 7.55 & -0.20^c & -0.37 & C(\bar{h}, NH & -0.156 & 7.44 & -3.20^c & -5.38 \\ {\rm chr} (c\bar{h}, & -0.047 & 7.55 & -0.20^c & -0.37 & C(\bar{h}, NH & -0.151 & 6.07 & -4.40^c & -3.39 \\ {\rm chr} (c\bar{h}, C\bar{n}) & -0.047 & 7.35 & 0.10^c & -0.19 & N, H & -0.150 & 6.08 & -3.40^c & -3.39 \\ {\rm chr} (c\bar{h}, C\bar{n}) & -0.041 & 7.56 & 0.10^c & -0.19 & N, H & -0.150 & 5.03 & -3.40^c & -3.31 \\ {\rm chr} (c\bar{h}, -0.003 & 7.46 & 0.20^e & 0.11 & NC, C\bar{c} (\bar{h}, CCN) & -0.130 & 5.34 & -2.20^f & -2.35 \\ {\rm cc} (c\bar{h}, -0.003 & 7.26 & 0.37^h & 1.66 & (NC, C\bar{c} (CCN) & -0.140 & 5.34 & -2.40^f & -2.39 \\ {\rm c} (c\bar{h}, O, -0.003 & 7.42 & 0.36^e & 0.79 & N0 & -0.033 & 4.43 & -3.49 & -2.34 \\ {\rm c} (c\bar{h}, O, -0.022 & 7.88 & 0.50^e & 0.79 & N0 & -0.033 & 4.44 & 1.50^e & 0.46 \\ {\rm c} (c, \bar{h}, NO_{\rm c} & 0.274 & 8.06 & 2.23h & 1.22 \\ {\rm c} (c, O, H & -0.016 & 7.57 & 0.70^e & 1.33 & N, F_{\rm c} & 0.140 & 5.34 & -2.40^f & -2.38 \\ {\rm c} (c\bar{h}, O, -0.023 & 7.42 & 0.60^e & 0.99 & C(\bar{h}, NO_{\rm c} & 0.274 & 8.06 & 2.27h & -2.35 \\ {\rm c} (c\bar{h}, C\bar{C} (cCN)_{\rm c} & -0.017 & 8.63 & 1.40^f & 1.71 & -2.40^e & 2.23 & 1.22 \\ {\rm c} (c, O, H & -0.016 & 7.57 & 0.70^e & 1.33 & N, F_{\rm c} & 0.144 & 6.71 & 2.40^e & 2.23 & 1.22 \\ {\rm c} (c, C\bar{D} & -0.017 & 8.65 & 1.40^f & 1.71 & -2.243 & 4.24 & -5.25 & -7.10^e & 7.10^e & 7.10^e & 7.10^e & 7.10^e & 7.10^e & 0.42 \\ {\rm c} (c, C\bar{D} & -0.017 & 8.63 & 1.40^f & 1.71 & -2.246 & -2.24 & -2.240^e & -2.23 & -2.24 \\ {\rm c} (c, \bar{L}, C\bar{C} (C) & -0.131 & 2.24 & -2.240^e & 2.24 & -2.240^e & -2.24 & -2.240^e & -2.24 & -2.240^e & -2.24 & -$	$P(CH_{\lambda})_{\lambda}$	-0.028	7.93	-0.90° $-0.58^{\circ}d$	-0.55 -0.27	$(NC)_2 COC(CN)_2$	0.201	8.86	6.00 <i>†</i>	5.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GeH ₃ CH ₃	-0.043	8.33	-0.52b	-1.17	C_4F_8	0.275	8.36	6.30 <i>h</i>	7.39
	C ₆ H ₆	-0.032	7.99	-0.50e	-0.82	CO ₂	0.294	6.07	6.80 <i>e</i>	7.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	оснененен	-0.022	7.94	-0.40 c	-0.06	C ₄ F ₃	0.355	7.12	8.30^{1} 8.91 h	8.10 9.44
	SiH ₃ CH ₃	-0.057	8.17	-0.40b	-1.18	CF_4	0.498	7.12	11.001	10.75
$ \begin{array}{ccccccc} CH_1 & -0.047 & 7:55 & -0.257 & -0.37 \\ CH_2 & -0.066 & 6.96 & 0.00 & 0.13 & C(H_1,NH & -0.194 & 6.74 & -5.20n & -5.36 \\ CH_2 CH_4 & -0.065 & 7.21 & 0.10^{\sigma} & 0.46 & C_1H_1NH & -0.194 & 6.74 & -5.20n & -5.36 \\ CH_1 CH_1 & -0.045 & 7.21 & 0.10^{\sigma} & 0.46 & C_1H_1NH & -0.187 & 6.06 & -4.40^{\sigma} & -3.89 \\ TKCHICHCH & 0.066 & 7.85 & 0.10^{\sigma} & -0.19 & NH_1 & -0.187 & 6.06 & -4.40^{\sigma} & -3.89 \\ TK_1 CH_1 & -0.041 & 7.31 & 0.18^{\mu} & 0.55 & (CH_3) NBH_1 & -0.040 & 9.29 & -3.27^{\mu} & -3.48 \\ CH_1 CH_1 & -0.041 & 7.31 & 0.18^{\mu} & 0.55 & (CH_3) NBH_1 & -0.040 & 9.29 & -3.27^{\mu} & -3.48 \\ S(CH_1)_5 & -0.007 & 7.22 & 0.29^{\mu} & 0.26 & H(N & -0.150 & 5.34 & -3.20^{\tau} & -2.46 \\ S(CH_1)_5 & -0.062 & 6.82 & 0.40^{\mu} & -0.09 & ND & -0.015 & 5.34 & -3.20^{\tau} & -3.31 \\ C_{11}^{\mu}_{J_1} & -0.062 & 6.82 & 0.40^{\mu} & -0.09 & ND & -0.033 & 4.24 & 0.80^{\mu} & 0.24 \\ CH_1 CO_1 & -0.062 & 7.58 & 0.60^{\sigma} & 0.79 & ND & -0.033 & 4.24 & 0.80^{\mu} & 0.24 \\ CH_1 CO_1 & -0.062 & 7.57 & 0.70^{\tau} & 1.33 & N_1F_1 & 0.164 & 6.71 & 2.23^{\mu} & 1.32 \\ CH_1 CO_1 & -0.063 & 7.61 & 0.80^{\sigma} & 0.49 & ND_1 & 0.234 & 6.33 & 2.80^{\sigma} & 0.79 \\ CH_1 CO_1 & -0.019 & 7.99 & 0.56^{\mu} & 1.19 & NOC & 0.024 & 8.06 & 1.70^{\sigma} & 2.12 \\ CH_1 CO_1 & -0.033 & 7.61 & 0.80^{\sigma} & 1.04 & ND_1 & 0.238 & 6.32 & 4.10^{\mu} & 3.25 \\ CH_1 CO_1 & -0.019 & 7.99 & 0.76^{\mu} & 1.33 & N_1F_1 & 0.238 & 6.32 & 4.30^{\mu} & 3.25 \\ CH_1 CO_1 & -0.019 & 7.99 & 0.76^{\mu} & 1.23 & N_1F_1 & 0.238 & 6.32 & 4.30^{\mu} & 3.25 \\ CH_1 CH_1 & 0.053 & 7.61 & 0.80^{\mu} & 1.24 & ND_1 & 0.238 & 6.32 & 4.30^{\mu} & 3.25 \\ CH_1 CH_1 & 0.066 & 7.82 & 1.60^{\sigma} & 1.14 & ND_1 & 0.238 & 6.32 & 4.30^{\mu} & 3.25 \\ CH_1 CH_1 & 0.066 & 7.82 & 1.60^{\sigma} & 1.23 & CH_1 NO_1 & -0.238 & 4.88 & -5.66^{\mu} & -7.00 \\ CH_1 CH_1 & 0.066 & 7.82 & 1.60^{\mu} & 1.71 & CH_1 OH & -0.194 & 2.88 & -5.66^{\mu} & -7.00 \\ CH_1 CH_1 & 0.066 & 7.82 & 1.60^{\mu} & 1.71 & CH_1 OH & -0.194 & 2.88 & -5.36^{\mu} & -3.20^{\mu} & -3.27 \\ CH_1 CH_1 & 0.066 & 7.82 & 1.60^{\mu} & 1.71 & CH_1 OH & -0.194 & 2.8 & -5.36^{\mu} & -7.27 \\ CH_1 CH_1 & 0.016 & 7.8$	СН СН СН	-0.033	8.03	0 30 <i>1</i>	-0.66		Nitro	ngen		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2H_6	-0.047	7.55	-0.20g	-0.37	$(CH_3)_3N$	-0.186	7.44	-5.20 n	-6.37
$ \begin{array}{ccccccc} c_{\rm H_1} & -0.045 & 7.21 & 0.10^{\circ} & 0.46 & C_{\rm H_1}^{\rm H_1} & -0.113 & 6.07 & -4.30^{\circ} & -3.35 \\ c_{\rm H_1} CH_{\rm P} & -0.046 & 7.35 & 0.10^{\circ} & -0.19 & N,H_{\rm H_1} & -0.151 & 6.05 & -3.30^{\circ} & -3.35 \\ c_{\rm H_1} CH_{\rm P} & -0.046 & 7.31 & 0.18^{\circ} & 0.55 & (CH_1),NBH_{\rm H_1} & -0.150 & 6.05 & -3.30^{\circ} & -3.26 \\ c_{\rm H_1} CH_{\rm O} & -0.041 & 7.56 & 0.20^{\circ} & 0.11 & (NC_1CCH_1CCN)_{\rm C} & -0.153 & 5.33 & -3.10^{\circ} & -2.60 \\ S(CH_1)_{2} & -0.007 & 7.82 & 0.29^{\circ} & 0.20^{\circ} & HCN & -0.153 & 5.33 & -3.10^{\circ} & -2.64 \\ c_{\rm H_1} C_{\rm H_1} & -0.062 & 6.82 & 0.40^{\circ} & -0.09 & N,H_{\rm C} & -0.133 & 5.33 & -3.10^{\circ} & -2.48 \\ c_{\rm H_1} & -0.062 & 6.82 & 0.40^{\circ} & -0.09 & N,N_{\rm C} & -0.033 & 4.24 & 0.80^{\circ} & 0.02 \\ c_{\rm H_1} CO_{\rm I} & -0.003 & 7.42 & 0.50^{\circ} & 0.79 & No & -0.033 & 4.24 & 0.80^{\circ} & 0.02 \\ c_{\rm H_1} CO_{\rm I} & -0.016 & 7.57 & 0.70^{\circ} & 1.33 & N,F_{\rm I} & 0.164 & 6.71 & 2.40^{\circ} & 2.42 \\ c_{\rm H_1} CO_{\rm I} & -0.016 & 7.57 & 0.70^{\circ} & 1.33 & N,F_{\rm I} & 0.164 & 6.71 & 2.40^{\circ} & 2.42 \\ cCC_{\rm L} O_{\rm C} H_{\rm I} & -0.016 & 7.57 & 0.70^{\circ} & 1.33 & N,F_{\rm I} & 0.224 & 6.33 & 3.00^{\circ} & 3.31 \\ 0CC_{\rm C} O_{\rm I} O_{\rm I}$	ĊH₄ °	-0.060	6.96	0.00	0.13	(CH ₃) ₂ NH	-0.194	6.74	-5.00^{n}	-5.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* CH ₃ CH ₂ (CO)OC ₂ H ₅	-0.045	7.21	0.10 <i>e</i>	0.46	CH_3NH_2 C.H.NH.	0.203	6.07 6.06	-4.80 <i>n</i> -4.40e	-4.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						NH ₃	-0.211	5.37	-4.30n	-3.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HNCHCHCHCH *	0.006	7.85	0.10 <i>c</i>	-0.19	N_2H_4	-0.150	6.05	-3.80 n	-3.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ĊH₂CHF	-0.046	7.31	0.18 h	0.55	(CH ₃) ₃ NBH ₃	-0.040	9.92	-3.274	-4.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ĊH₃CH₂OH	-0.041	7.56	0.20 e	0.11	$(NC)_2CCH_2C(CN)_2$	-0.150	5.34	-3.20 <i>f</i>	-2.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(CH ₃) ₂	-0.007	7.82	0.29 <i>a</i>	0.26	HCN	-0.153	5.37	-3.10^{n}	-3.11
	CH ₂ CF ₂	-0.030	7.26	0.37h	1.66	$(NC)_{a} COC(CN)_{a}$	-0.149	5.34	-2.80^{f}	-2.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ H ₂	-0.062	6.82	0.40%	-0.09	N ₂	0.00	5.03	0.00	0.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(CH_3)_2CO_{\ast}$	-0.022	7.58	0.50e	0.79	NO	-0.033	4.24	0.80n	0.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1,5,5-C_6 \Pi_3 \Gamma_3$ (CII)	-0.008	7.99	0.36	1.19		0.074	6.24 8.06	1.50 ⁿ 1.70e	0.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CHO *	-0.023	7.42	0.60*	0.99	CH ₃ NO ₂	0.278	8.00	2.23h	1.92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH₃CO₂H *	-0.016	7.57	0.70e	1.33	N_2F_4	0.164	6.71	2.40 n	2.62
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$p-C_6H_4F_2$ (CH)	-0.019	7.99	0.76 ^j	0.42	NNO	0.236	7.08	2.60 n	2.71
$ \begin{array}{ccccccc} 0.033 & 7.61 & 0.050 & 1.01 & 0.05 & 1.01 & 0.049 & 1.01 & 0.0499 & 3.85 & 7.10n & 7.09 \\ 0.0C2C & 0.033 & 7.63 & 0.80h & 2.88 & 0NF_5 & 0.499 & 8.38 & 7.10n & 7.09 \\ (CC)_{2}(CH_{4}C(CN)_{2} & -0.017 & 8.05 & 1.40f & 1.71 & (SH_{3})_{2}O & -0.283 & 4.48 & -5.56h & -7.30 \\ CH_{3}(CH_{2}OH & 0.060 & 7.82 & 1.60e & 1.23 & CH_{3}(CH & -0.194 & 2.89 & -5.23d & -3.77 \\ CH_{3}(C & 0.020 & 7.70 & 1.60l & 1.18 & (CH_{3})_{2}O & -0.223 & 3.64 & -5.169 & -5.40 \\ C_{4}(CO)OCH_{4}CH_{3} & 0.042 & 7.82 & 1.70e & 1.44 & C_{4}(CH)O & -0.229 & 3.62 & -4.90l & -5.23 \\ CH_{3}(OH & 0.048 & 7.18 & 1.75e^{i} & 1.78 & VOC_{3} & -0.311 & 4.23 & -4.85d & -4.91 \\ C_{2}H_{4}O & 0.067 & 7.68 & 1.80^{i}h & 1.80 & Cr_{0}C_{4} & -0.311 & 4.23 & -4.48e^{j} & -3.00 \\ C_{4}H_{7}(CF) & 0.106 & 8.04 & 2.43j & 1.71 & CH_{5}OH & -0.235 & 3.00 & -4.50e & -4.30e \\ HCN & 0.081 & 6.45 & 2.60i & 2.15 & C_{2}H_{4}(CO)OC_{7}H_{8} & -0.207 & 3.66 & -3.32h & -5.99 \\ HCN & 0.081 & 6.45 & 2.60i & 2.17 & CH_{4}OH & -0.235 & 2.95 & -4.40e^{i} & -3.89 \\ HCN & 0.081 & 6.45 & 2.60i & 2.72 & H_{4}O & -0.040 & 2.26 & -3.60e^{i} & -3.56 \\ -C_{6}H_{4}F_{1}(CF) & 0.118 & 8.04 & 2.87i & 2.56 & C_{1}O_{2} & -0.290 & 2.79 & -3.50e & -3.82 \\ HCFC_{7} & 0.107 & 8.04 & 2.87i & 2.56 & C_{1}O_{2} & -0.290 & 2.79 & -3.50e & -3.82 \\ CHFC_{7} & 0.108 & 8.04 & 3.02i & 2.48 & H(CO)OH & -0.213 & 2.94 & -3.17i & -2.81 \\ CH_{4}C_{5} & 0.039 & 8.35 & 3.10i & 2.25 & CH_{4}(CO)OH & -0.213 & 2.94 & -3.17i & -2.81 \\ CH_{4}C_{5} & 0.132 & 7.91 & 3.10e & 2.29 & CO_{3} & -0.291 & 2.67 & -3.20f & -2.97 \\ 1.3.5C(H_{1}F_{5}(CF) & 0.118 & 8.04 & 3.02i & 2.48 & H(CO)OH & -0.213 & 2.94 & -3.17i & -3.81 \\ CH_{4}C_{5} & 0.039 & 8.35 & 3.10i & 3.25 & CH_{4}(CO)OH & -0.213 & 2.94 & -3.10e & -2.90 \\ CK_{1}C_{5}CCC(CN)_{5} & 0.132 & 7.91 & 3.10e & 2.29 & CO_{3} & -0.0301 & 3.20 & -3.10e & -2.90 \\ CK_{1}C_{5}COC(CN)_{5} & 0.132 & 7.91 & 3.10i & 3.43 & OCS & -0.134 & 2.27 & 692.65i & 693.00 \\ CH_{4}C_{5}CH_{4}COO_{5} & 0.132 & 2.71 & 3.50e & 3.30 & 0.20e & -0.320 \\ CH_{5}C_{7} & 0.132 & 8.04$	Снененен	0.053	7.61	0.800	1 04	NO ₂	0.234	6.33	3.00^{n}	3.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.033	7.62	0.00*	2.04	NF ₃ ONF	0.233	6.32 8 38	4.30^{n} 7 10 n	3.85
		0.055	7.05	0.80%	2.00	01413	0.155	0.50	7.10	7.05
$\begin{array}{ccccc} {\rm CH}_{*}^{\bullet} {\rm CH}_{*} {\rm OH} & 0.060 & 7.82 & 1.60^{e} & 1.23 & {\rm CH}_{*}^{\bullet} {\rm CH}_{*} {\rm OO} & -0.134 & 1.76 & -5.234 & -3.77 \\ {\rm CH}_{*} {\rm CL} & 0.020 & 7.70 & 1.60^{i} & 1.18 & {\rm (CH}_{*}_{*}_{*}_{*} {\rm O} & -0.231 & 3.64 & -5.16^{b} & -5.40 \\ {\rm CH}_{*} {\rm CO} {\rm OO}^{\bullet} {\rm Ch}_{*} {\rm CH}_{*} & 0.062 & 7.82 & 1.70^{e} & 1.44 & {\rm C}_{*} {\rm H}_{*} {\rm O} & -0.239 & 3.62 & -4.90^{i} & -5.23 \\ {\rm CH}_{*} {\rm OO}^{\bullet} {\rm OO}^{\bullet} {\rm Ch}_{*} & 0.062 & 7.82 & 1.70^{e} & 1.44 & {\rm C}_{*} {\rm H}_{*} {\rm O} & -0.239 & 3.62 & -4.90^{i} & -5.23 \\ {\rm C}_{*} {\rm H}_{*} {\rm C} {\rm C}^{*} & 0.066 & 7.68 & 1.80^{i,f} & 1.78 & {\rm VOCI}_{*} & -0.319 & 4.23 & -4.884 & -4.91 \\ {\rm C}_{*} {\rm H}_{*} {\rm O} & 0.066 & 7.68 & 1.80^{i,f} & 1.80 & {}^{i,f} & 1.80 & {}^{i,f} {\rm Ch}_{*} & 0.325 & 3.00 & -4.50^{e} & -4.69^{e} \\ {\rm C}_{*} {\rm H}_{*} {\rm C} {\rm F}^{*} & 0.106 & 8.04 & 2.43^{j} & 1.71 & {\rm CH}_{*} {\rm OH} & -0.235 & 3.00 & -4.50^{e} & -4.30^{e} \\ {\rm C}_{*} {\rm H}_{*} {\rm C} {\rm F}^{*} & 0.0168 & 8.04 & 2.60^{j} & 3.21 & {\rm CH}_{*} {\rm OO} & -0.193 & 2.95 & -4.10^{e} & -3.89 \\ {\rm P}_{*} {\rm C}_{*} {\rm H}_{*} {\rm F}^{*} & 0.076 & 7.66 & 2.80^{j} & 2.72 & {\rm H}_{*} {\rm O} & -0.207 & 3.66 & -3.82h & -5.09 \\ {\rm CH}_{*} {\rm F}^{*} & {\rm O}^{*} {\rm O$	$(NC)_2CCH_2C(CN)_2$	-0.017	8.05	1.40 <i>f</i>	1.71	(SiH) O	Oxy 0 283	gen A A S	-5 560	-730
$\begin{array}{cccc} {\rm CH}_{3}^{'}{\rm Cl} & 0.020 & 7.70 & 1.60^{I} & 1.18 & {\rm (CH}_{3}, 0 & -0.231 & 3.64 & -5.16^{J} & -5.40^{J} \\ {\rm C}_{1}{\rm H}_{1}({\rm CO}){\rm OC}^{+}{\rm L}_{2}{\rm CH}_{3} & 0.062 & 7.82 & 1.70^{e} & 1.44 & {\rm C}_{1}{\rm H}_{2}{\rm O} & -0.229 & 3.62 & -4.90^{I} & -5.23 \\ {\rm CH}_{0}{\rm OH} & 0.048 & 7.18 & 1.75^{e,I} & 1.78 & {\rm COC}_{1_{2}} & -0.301 & 4.23 & -4.85^{J} & -4.99 \\ {\rm C}_{2}{\rm H}_{0}{\rm O} & 0.067 & 7.68 & 1.80^{I,I} & 1.80 & {\rm Cr}_{0}{\rm C}_{1_{2}} & -0.301 & 4.23 & -4.89^{J} & -4.36 \\ {\rm C}_{1}{\rm H}_{0}{\rm C} & -0.236 & 2.95 & -4.40^{e,I} & -3.99 \\ {\rm CH}_{*}^{-}{\rm CH} & 0.078 & 7.37 & 2.54h & 2.15 & {\rm C}_{1}{\rm H}_{0}{\rm CO} & -0.193 & 2.95 & -4.40^{e,I} & -3.99 \\ {\rm HCN} & 0.081 & 6.45 & 2.60^{I} & 3.21 & {\rm CH}_{1}{\rm OC} & -0.195 & 2.85 & -4.12P & -3.69 \\ {\rm HCN} & 0.081 & 6.45 & 2.60^{I} & 3.21 & {\rm CH}_{1}{\rm OC} & -0.195 & 2.85 & -4.12P & -3.69 \\ {\rm HCN} & 0.081 & 6.45 & 2.60^{I} & 3.21 & {\rm CH}_{1}{\rm OC} & -0.205 & 3.66 & -3.82h & -5.09 \\ {\rm HCN} & 0.016 & 8.04 & 2.74^{I} & 2.01 & {\rm C}_{1}{\rm H}_{*}{\rm O} & -0.240 & 2.26 & -3.60^{e,I} & -2.56 \\ {\rm o-c}_{*}{\rm H}_{*}{\rm F}_{*}{\rm (CF)} & 0.107 & 8.04 & 2.87^{I} & 2.56 & {\rm C}_{*}{\rm O}_{2} & -0.124 & 3.67 & -3.20^{I} & -2.97 \\ {\rm m}_{*}{\rm C}_{1}{\rm H}_{*}{\rm F}_{*}{\rm (CF)} & 0.107 & 8.04 & 2.92^{I} & 2.10 \\ {\rm *}{\rm CHFCF}_{2} & 0.109 & 7.36 & 2.93h & 4.25 & {\rm (NC)}_{*}{\rm COC}{\rm (CN)}_{2} & -0.214 & 3.67 & -3.20^{I} & -2.97 \\ {\rm I}_{3.5}{\rm C}_{*}{\rm H}_{*}{\rm J}_{*}{\rm (CF)} & 0.108 & 8.04 & 3.02^{I} & 2.48 & {\rm HCOO}^{OH} & -0.213 & 2.94 & -3.17^{I} & -2.81 \\ {\rm CH}_{*}{\rm C}_{*} & 0.099 & 8.35 & 3.10^{I} & 2.25 & {\rm CH}_{*}{\rm (CO)}^{OH} & -0.213 & 2.94 & -3.10^{e} & -3.90 \\ {\rm (CH}_{*}{\rm J}_{*}^{C}{\rm COV}_{*} & 0.026 & -0.054 & 3.38 & -1.00e^{e,I} & -1.50 \\ {\rm CH}_{*}^{C}{\rm CO}_{*}{\rm CO}_{*} & 0.028 & -0.054 & 3.38 & -1.00e^{e,I} & -2.90 \\ {\rm (CH}_{*}{\rm J}_{*}^{C}{\rm COV}_{*} & 0.118 & 8.04 & 3.01^{I} & 3.40 & {\rm CO} & -0.054 & 3.38 & -1.00e^{e,I} & -2.60 \\ {\rm (CH}_{*}{\rm J}_{*}^{C}{\rm COV}_{*} & 0.118 & 8.04 & 3.57 & 3.10^{I} & 3.40 & {\rm CO} & -0.148 &$	CH, ČH, OH	0.060	7.82	1.60 <i>e</i>	1.23	CH ₃ CHO	-0.194	2.89	5.23d	-3.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ Cl	0.020	7.70	1.60 <i>l</i>	1.18	(CH ₃) ₂ O	-0.231	3.64	-5.16 ^b	-5.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2H_5(CO)OCH_2CH_3$	0.062	7.82	1.70 <i>°</i>	1.44	C_2H_4O	0.229	3.62	-4.901	-5.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СН ₃ ОН	0.048	7.18	1.75 <i>e</i> ,i	1.78	CrO ₂ Cl ₂	-0.319	4.25	-4.690	-4.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ H ₄ O *	0.067	7.68	1.80 %	1.80	C₂H₅OH	-0.235	3.00	-4.50e	-4.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6H_5F(CF)$	0.106	8.04	2.431	1.71	CH ₃ OH	-0.236	2.95	_4.40 <i>e</i> ,i	-3.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH₂ČHF	0.078	7.37	2.54 h	2.15	$C_2H_5(CO)OC_2H_5$	-0.207	3.66	-4.30^{e} -4.12^{p}	-4.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCN *	0.081	6.45	2.601	3.21	(CH ₂),CO	-0.193	2.95	-4.10 <i>e</i>	-3.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p-C_6H_4F_2$ (CF)	0.106	8.04	2.74 <i>i</i>	2.01	C ₄ H ₄ Ô	-0.205	3.66	-3.82^{h}	-5.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₃ F *	0.076	7.06	2.801	2.72	H ₂ O	-0.240	2.26	$-3.60^{e,i}$	-2.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$o-C_6H_4F_2$ (CF)	0.118	8.04	2.871	2.56	$C_3 O_2$ SO	-0.162	2.83	3.50 <i>°</i>	-2.74 -3.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m-C_6H_4F_2$ (CF)	0.107	8.04	2.92 ^j	2.10					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ĈHFCF₂	0.109	7.36	2.93h	4.25	$(NC)_4 COC(CN)_2$	-0.214	3.67	-3.207	-2.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3,5-C ₆ H ₃ F ₃ (ĈF)	0.108	8.04	3.02 <i>i</i>	2.48	H(CO)OH	-0.213	2.94	-3.17^{i}	-2.81
$\begin{array}{c c} (CH_3)_2 CO & 0.132 & 7.91 & 3.10^e & 2.29 & SO_3 & -0.291 & 2.67 & -2.60^u & -2.49 \\ CO_2 & -0.147 & 2.76 & -2.35^{e,i} & -1.57 \\ (NC)_2 CCH_2 C(CN)_2 & 0.096 & 7.04 & 3.10^f & 3.43 & OCS & -0.158 & 2.81 & -1.50^q & -2.48 \\ CH_3 CHO & 0.122 & 7.22 & 3.20^e & 3.03 & O_2 & 0.000 & 2.43 & 0.00 & -0.22 \\ (NC)_2 COC(CN)_2 & 0.102 & 7.04 & 3.40^f & 4.03 & NO & 0.033 & 3.00 & 0.20^e & -0.36 \\ CH_2 O & 0.111 & 6.60 & 3.50^m & 3.69 & Fluorine \\ C_6 F_6 & 0.132 & 8.04 & 3.57^j & 4.49 & C_2 H_5 F & -0.148 & 2.31 & 692.05^h & 692.61 \\ C_2 H_5 (CO)OC_2 H_5 & 0.235 & 7.47 & 3.80^e & 4.31 & C_6 H_4 F_2 & -0.134 & 2.27 & 692.56^j & 693.00 \\ (NC)_2 CCC (CN)_2 & 0.100 & 9.19 & 4.10^f & 3.06 & M^{-}C_6 H_4 F_2 & -0.134 & 2.27 & 692.86^j & 693.18 \\ P^{-}C_6 H_4 F_2 & -0.134 & 2.27 & 692.86^j & 693.18 \\ P^{-}C_6 H_4 F_2 & -0.134 & 2.27 & 692.86^j & 693.16 \\ OCCCO & 0.146 & 6.94 & 4.20^h & 4.26 & o-C_6 H_4 F_2 & -0.133 & 2.31 & 692.93^j & 693.16 \\ CH_3 CO_2 H & 0.234 & 7.51 & 4.70^e & 4.63 & CH_3 CH_2 & -0.134 & 2.27 & 692.86^j & 693.88 \\ HCO_2 H & 0.224 & 6.80 & 5.00^e & 5.34 & 1.3,5^{-}C_6 H_3 F_3 & -0.134 & 2.27 & 692.93^h & 693.38 \\ HCO_2 H & 0.224 & 6.80 & 5.00^e & 5.34 & 1.3,5^{-}C_6 H_3 F_3 & -0.134 & 2.27 & 692.93^h & 693.39 \\ CH_2 CF_2 & 0.219 & 7.39 & 5.14^h & 4.76 & WF_6 & -0.221 & 3.20 & 693.36^d & 693.07 \\ \end{array}$	CH ₂ Cl ₂	0.099	8.35	3.101	2.25	CH ₃ (CO)ÓH	-0.212	3.00	-3.10e	-2.90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CH₃)₂ĈO	0.132	7.91	3.10 e	2.29	SO ₃	-0.291	2.67	-2.60 <i>a</i> -2.35 <i>e</i> , <i>i</i>	-2.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(NC), CCH , $C(CN)$,	0.096	7.04	3.10 <i>f</i>	3.43	OCS	-0.158	2.81	-1.50^{q}	-2.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.122	7 22	3 20 e	3.03	CO	-0.054	3.38	-1.00 <i>e</i> ,i	-1.86
$\begin{array}{c cccccc} (NC)_2 & 0.102 & 7.04 & 3.40f & 4.03 & NO & 0.003 & 0.003 & 0.000 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 & 0.000 & 0.20$	*	0.122	1.22	5.20-	5.05	O₂ NO	0.000	2.43	0.00 0.20e	0.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(NC)_2 COC(CN)_2$	0.102	7.04	3.40f	4.03		0.000	5.00	0.20-	0.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_2O C.F.	0.111	6.60 8.04	3.50m 3.57j	3.69 4.49	ОЦЕ	Fluo	rine	602 05 h	603 61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.225	7 47	3 80 6	L 21	$C_2 H_5 \Gamma$ C. H. F	-0.146	2.31	692.56 ^j	693.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_2 \Pi_5 (CO) O C_2 \Pi_5$	0.233	0.10	J.00- 1 10f	2.04	CH₃F	-0.149	2.31	692.60 <i>i</i>	692.60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(NC)_2 CCH_2 C(CN)_2$	0.100	3.13	4.107	3.00	$m - C_6 H_4 F_2$	-0.134	2.27	692.86 ^j	693.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02220	0.146	6.94	4.20 k	4.26	$p - C_6 H_4 F_2$	-0.134 -0.133	2.27	692.93 <i>i</i>	693.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHCl ₃	0.178	9.01	4.301	3.25	C_2H_3F	-0.135	2.30	692.93 ^h	692.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ ČO ₂ H	0.234	7.51	4.70 <i>e</i>	4.63	CH ₃ CHF ₂	-0.140	2.29	692.98 <i>h</i>	693.38
$CH_2CF_2 0.219 7.39 5.14^h 4.76 WF_6 -0.221 3.20 693.35^d 693.07 $	HCO ₂ H	0.224	6.80	5.00 e	5.34	1,3,5-C ₆ H ₃ F ₃	-0.134	2.27	693.071 692 221	693.36
	CH ₂ ČF ₂	0.219	7.39	5.14 ^h	4.76	WF ₆	-0.221	3.20	693.36 ^d	693.07

Table	П	(Continued	ĥ
1 4010		(Contrational)	,

			E _B , e	eVa				E _B	, eVa
Compound	Q	$-E_{\mathbf{R}}, \mathbf{eV}$	Exptl	Calcd v	Compound	Q	$-E_{\mathbf{R}}, \mathbf{eV}$	Exptl	Calcd ^v
CHFCF.	-0.134	2.29	693.73h	693.52	NSF,	0.810	3.02	176.90 <i>°</i>	176.57
HF	-0.151	1.47	693.80 ^r	694.47	SO,Ĕ,	0.972	2.89	177.50d	177.91
CH.CF.	-0.132	2.31	693.81 h	694.06	SF	0.783	2.54	177.60 <i>†</i>	177.20
C.F.	-0.132	2.27	693.94 <i>j</i>	693.83	SF Cl	1.026	3.69	179.20*	178.64
PF	-0.119	2.45	693.94d	693.91	SF	1.110	3.40	180.40e	179.41
CH CE	-0.127	2.40	693 99 h	693.65					
	_0.024	2.27	694 04d	693 72		Chle	orine		
CaF	-0.150	2.40	604 110	693.60	GeH ₃ Cl	-0.096	1.68	205.50 <i>b</i>	205.42
CHE	-0.130	2.33	604 201	60/ 18	VOCl ₃	-0.170	1.93	205.93 <i>d</i>	206.03
	-0.133	2.27	604 20h	604 20	CrO ₂ Cl ₂	-0.156	1.92	206.01 <i>d</i>	206.31
	0.132	2.52	094.32"	094.29	SiH,Cl	-0.109	1.58	206.05 <i>b</i>	205.49
CHF C F,	-0.126	2.28	694.43 ^h	693.87	CH,Cl	0.081	1.18	206.07b	206.23
NF ₂	-0.078	2.24	694.45 <i>h</i>	694.77	PCl	-0.052	1.30	206.27 d	206.74
SiF.	-0.158	2.76	694.56 ^b	693.96	GeC1.	-0.079	1.66	206.42	206.43
C.F.	-0.137	2.30	694.74h	694.61	ICI	-0.042	1.46	206.68m	206.40
C.F.	-0.131	2.27	694.95h	695.01	S.Cl.	-0.034	1.31	206 708	206 71
CF	-0.124	2.26	695 200	695.00	SiCl	-0.097	1 58	206.778	206.53
F	0.000	1.96	696 20 m	695.83	CCI	0.064	1 10	206.840	200.33
- 2	0.000	1.20	070.20	070.00		-0.004	0.71	200.84-	207.14
					Cl	-0.090	1.20	207.22°	207.03
	Sil	icon				0.00	1.20	207.04	207.17
Si(CH ₂)	0.035	3.51	105.96 ^b	106.80		0.084	0.76	208.21 m	208.40
CH_SiH_	-0.013	2.75	106.82 ^b	107.16		0.746	1.52	213.02	214.06
Si,H.	-0.023	3.07	106.86d	106.78	CIO ₃ F	1.116	2.09	216.104	215.33
SiH.	-0.029	2.49	107.280	107.35		Chro	mium		
(SiH.).O	0.099	2.64	107.810	107.81	CYCCO) COCH CH	_1 010	0.67	581 100	591 17
SiH. Br	0.057	2.98	108.080	107.82	$C_1(CO)_5 C(OCH_3)CH_3$	-1.019	0.67	581.780	591.17
SiH_Cl	0.071	2.86	108.110	108.04	C_{r0}	-1.021	0.08	587 400	587 /0
CH SiCl	0.284	3.83	109.254	109.03	CIO_2CI_2	0.910	0.40	307.400	387.40
SiBr	0.204	4 3 8	100 735	109.00		Germ	anium		
SiCi	0.369	302	110 30b	100.55	Ge(CH _a).	-0.030	1.62	128.040	128.72
SiCi ₄ SiE	0.508	2.52	111 70b	112 43	CH. GeH.	-0.076	1.21	128.920	129.09
511.4	0.033	2.07	111./9-	112.45	GeH	-0.901	1 07	129 336	129 20
	Phos	phorus			GeH Br	-0.003	1 32	130 040	129.20
$P(CH_{1})$	-0.060	3.19	135.76d	135.20	GeH Cl	0.012	1.52	130 230	120.04
PH.	-0.096	2.30	136.87 <i>d</i>	136.19	GeBr	0.012	2.05	13135b	131 21
(CH) PBH	0 140	4 10	137 004	137.40	GeCl	0.230	1.00	122 125	121.21
(CH) PCH	0.140	3 76	137 034	138 18	CoF	0.510	1.02	132.12°	122.06
$(CH_3)_3 + CH_2$	0.201	3.60	137 30d	138 12	Ger ₄	0.002	1.20	155.750	133.90
$(CH_3)_3 I HII $	0.240	3.05	127 A5d	127 01		Bro	mine		
$(CH_3)_3FS$	0.214	2.54	137.43~ 127.62d	120 02	GeH.Br	-0.078	0.56	75.650	75.80
	0.515	3.33	120 COd	120.92	IBr	-0.022	0.51	76.00 m	76 38
PCI ₃	0.317	5.25	139.00	130.07	CH Br	-0.066	0.38	76 08 0	76:18
PSCI ₃	0.391	3.93	140.454	140.05	SiH Br	-0.003	0.50	76130	75.83
POCI ₃	0.496	3.44	140.8/4	141.03	GaBr	0.053	0.52	76.13-	76.50
PF ₃	0.358	2.05	141.634	140.86	SiD-	-0.003	0.57	76.240	76.50
POF ₃	0.719	2.51	142.90 <i>a</i>	143.75	CD _a	-0.077	0.52	70.470	70.01
PF₅	0.798	2.67	145.70ª	144.70		-0.050	0.40	/0.5/0	/6./8
	C.,	16			HBI	-0.076	0.18	77.060	76.63
S(CIL)	0.007		160.020	160.01	Br ₂	0.000	0.47	77.100	76.57
$S(C \Pi_3)_2$	-0.097	2.23	108.924	100.01	BrF _s	1.600	0.82	84.50 <i>m</i>	84.51
CS_2	0.042	1.72	169.80%	1/0.38		Ve	non		
SCHCHCHCH	0.063	2 10	160.000	160 17	Ye	0 000	0.00	0.004	_0.241
SUDUDUDUDU	-0.063	2.19	170 200	160.02	No VaE	0.000	0.00	0.00	-0.54 @
n ₂ 3	0.119	1.43	170.20	109.92	Nor ₂ VaF	0.948	0.9/	2.8/4	5.510
	-0.028	1.71	171.604	170.95	ACF4	1.729	1.94	5.41 "	5.820
$S_2 Cl_2$	0.034	2.44	1/1.50*	170.33	ACUF4	2.222	2.36	7.074	6.830
(CH ₃) ₂ SO	0.399	2.80	1/1.644	1/3.06	Xer ₆	2.370	2.83	/.64 <i>4</i>	7.370
$(CH_3)_2 SO_2$	0.673	3.41	173.634	174.40		Tur	osten		
SO ₂	0.580	2.02	174.800	175.24	W(CO)	-0 953	0 88	37 60 <i>d</i>	
SOF ₂	0.686	2.27	176.20e	176.28	WF	1 226	0.00	46 67 d	
SO.	0.873	2.74	176.50 ^a	177.01	·· · 6	1.520	0.00		

^a The listed binding energies are absolute values except in the case of the compounds of carbon, nitrogen, oxygen, and xenon, for which relative values are listed. Some of the values originating from our laboratory are slightly different from values which we have previously reported. These changes are due to a recent recalibration of the Berkeley X-ray photoelectron spectrometer. ^b W. B. Perry and W. L. Jolly, *Inorg. Chem.*, 13, 1211 (1974). ^c U. Gelius, C. J. Allan, G. Johansson, H. Siegbahn, D. A. Allison, and K. Siegbahn, *Physica Scr.*, 3, 237 (1971). ^d W. B. Perry, T. F. Schaaf, R. Rietz, S. Avanzino, M. S. Lazarus, and W. L. Jolly, unpublished data. ^e Reference 19a. ^f G. D. Stucky, D. A. Matthews, J. Hedman, M. Klasson, and C. Nordling, *J. Amer. Chem. Soc.*, 94, 8009 (1972). ^e T. D. Thomas, *J. Chem. Phys.*, 52, 1373 (1970). ^h D. W. Davis, Ph.D. Thesis, University of California, Berkeley; Lawrence Berkeley Laboratory Report LBL-1900, May 1973. ⁱ D. W. Davis, J. M. Hollander, D. A. Shirley, and T. D. Thomas, *J. Chem. Phys.*, 52, 3295 (1970). ^j D. W. Davis, D. A. Shirley, and T. D. Thomas, *J. Chem. Phys.*, 52, 3295 (1970). ^j D. W. Davis, D. A. Shirley, and T. D. Thomas, *J. Chem. Phys.*, 52, 3295 (1970). ^j D. W. Davis, D. A. Allison, H. Siegbahn, and K. Siegbahn, *Chem. Phys. Lett.*, 11, 224 (1971). ^l T. D. Thomas, *J. Amer. Chem. Soc.*, 92, 4184 (1970). ^m T. D. Thomas, unpublished data. ⁿ P. Finn, R. K. Pearson, J. M. Hollander, and W. L. Jolly, *Inorg. Chem.*, 10, 378 (1971). ^o W. B. Perry, T. F. Schaaf, W. L. Jolly, L. J. Todd, K. Siegbahn, *J. Electron Spectrosc. Relat. Phenomena*, 1, 131(1972). ^r P. Finn and W. L. Jolly, unpublished data. ^s W. L. Jolly, M. S. Lazarus, and O. Glemser, *Z. Anorg. Allgem. Chem.*, in press. ^t R. W. Shaw, T. X. Carroll, and T. D. Thomas, *J. Amer. Chem. Soc.*, 95, 5870 (1973). ^w T. X. Carroll, R. W. Shaw, T. D. Thomas, C. Kindle, and N. Bartlett, *ibid.*, 96, 1989 (1974). ^v Potentials calculated using literature structural data,

manium $3p_{3/2}$, 10 bromine $3d_{5/2}$, 5 xenon $3d_{5/2}$, and 2 tungsten $4f_{7/2}$ binding energies.

The compounds, the appropriate atomic charges, the calculated relaxation energies, and the experimental and calculated binding energies are listed in Table II. The leastsquares evaluated parameters, k and l, and the corresponding correlation coefficients and standard deviations for various elements are listed in Table III. All in all, the correlations, as measured by the standard deviations and the correlation coefficients, are quite good and attest the usefulness of the charge calculation method. For comparison, the standard deviations for correlations in which the relaxation energy was ignored are also listed in Table III. In most cases, omission of the relaxation energy correction caused an increase in the standard deviation. By a simple interpretation of the potential model equation it can be shown that the empirical kvalues should be inversely proportional to the radii of the valence electron shells.¹⁹ One might expect that valence shell radii would be proportional to the corresponding covalent radii, and, indeed, the k values obtained from our binding energy correlations are approximately inversely proportional to the reciprocal of the covalent radii of the atoms.

Nonequivalent Resonance Structures

For some molecules, nonequivalent resonance structures can be written. For example, two acceptable Lewis structures for N_2O are

$$N^{-1} N^{-20} N^{-20} O N^{-30} N^{-0} O^{-1}$$

Similarly, hyperconjugation ("no-bond" resonance) is significant in some molecules. Thus the following structures can be written for SOF_2

Both the formal charges and the calculated charges of the peripheral atoms of these compounds depend on the relative weights assigned to the resonance structures. Unfortunately, *a priori* weighting of the resonance structures is impossible, and therefore the binding energies for such atoms were excluded from our correlations. Of course, by appropriate weighting of the resonance structures, binding energies for such atoms can be made to fit eq 1, using values of k and l obtained from the correlation of the compounds which do not have nonequivalent resonance structures. Empirical rules for such weighting will be the subject of a future paper.

The formal charges and, to a large extent, the calculated charges of the *central* atoms of compounds such as N_2O and SOF_2 are *independent* of the relative weights assigned to the resonance structures. Hence binding energies for such atoms,

Table III. Parameters of Potential Model Correlations

Element	k	l	Correln coeff	Std dev	Std dev, $no E_{\mathbf{R}}$
С	30.50	8.12	0.972	0.62	0.81
Ν	30.69	5.46	0.987	0.60	1.01
0	25.50	2.21	0.896	0.73	0.59
F	27.95	697.79	0.934	0.34	0.26
Si	17.29	110.06	0.964	0.47	0.51
Р	19.28	139.37	0.953	0.89	1.33
S	18.63	172.30	0.983	0.70	0.74
C1	18.24	208.36	0.988	0.44	0.52
Cr	10.95	585.43	1.000	0.07	0.07
Ge	15.87	130.86	0.984	0.34	0.47
Br	13.32	77.05	0.993	0.31	0.38
Xe	12.06	-0.32	0.992	0.39	0.37
W	11.52	42.36			

which are relatively unaffected by the resonance of the molecules, were included in the correlations.

Inasmuch as the correlations involve the calculation of atomic charges for the core-ionized molecules as well as the ground-state molecules, resonance structures for the coreionized molecules must also be considered. For example, although the structure

is a satisfactory representation of the ground-state acetic acid molecule, the analogous structure for the molecule in which the carbonyl oxygen atom has lost a 1s electron is inadequate. In that case, two resonance structures are important.²³

$$\overset{F^{\star}}{\underset{II}{\overset{II}{}{II}{\overset{II}{}{II}{\overset{II}{}{II}{\overset{II}{}{II}{}}{I}{\overset{II}{}{II}{I$$

Therefore the binding energies for atoms of this type have been omitted from the present correlations. On the other hand, a single structure, analogous to that for the groundstate molecule, is adequate for the molecule in which the hydroxyl oxygen atom has lost a 1s electron

Of course, the binding energies for such atoms have been included in the correlations.

Acknowledgment. This work was supported by the U.S. Atomic Energy Commission and the National Science Foundation (Grant GP-41661X).

Registry No. Silicon, 7440-21-3; sulfur, 7704-34-9; chlorine, 7782-50-5; chromium, 7740-47-3; germanium, 7440-56-4; bromine, 7726-95-6; xenon, 7440-63-3; tungsten, 7440-33-7; fluorine, 7782-41-4; oxygen, 7782-44-7; nitrogen, 7727-37-9; carbon, 7440-44-0.

(23) In the structure shown, the core-ionized oxygen atom has been replaced with the isoelectronic F^+ ion, in accord with the principle of equivalent cores.²²